Section 9.2: Analysis

In this section Hungerford classifies all Finite Abelian Groups. The first section that may cause some confusion is in Theorem 7.9 where he suddenly calls upon k without previously defining it.  It seems that k may be the the number such that  (in the multiplicative notation) or (in the additive notation). The Fundamental Theorem of Finite Abelian […]

Section 8.3: Analysis

Once again the parallels to rings return in this study of groups. Here Hungerford explains Quotient Groups. They have properties that one might expect such a group to have. The coset notation is probably the most difficult part of this section. Properties of groups have thus far been seen to carry into subgroups and so […]